Tehnostav.ru

Стройка и Ремонт
16 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Датчик огня своими руками

Датчик температуры своими руками

Самодельная термопара? (датчик температуры)

Нужна небольшая консультация тех кто этим занимался.

В нете нашел это

Кто нибудь имеет конкретные наработки по выбору материалов, и нахождению их «под рукой»?

Необходимые температуры примерно от 90 до 500 Град.цельсия.

Погрешность линейности — 5-10 градусов.

Со схемой тоже пока не определился, но думаю это не проблема.

ingenegr. Вспомнил, их еще «задорого» «металлисты» покупали.

Вобщем получилось, сделал вроде.

Размотал ПП3 резистор — 10 ом.

И с проводом 0.6 с углем и аккумулятором «сварил».

Правда сварщик с меня никудышный, и акк старый — от радиостанции.

Держится не плохо. но хотелось-бы аккуратную красивую каплю поиметь.

Если бы были материалы покруче, может и разброс был больше.

По мере «танцев с бубном» буду отписываться

Простейший датчик температуры на LM35

Начнём с того, что мне как-то понадобился для одного проекта электронный термометр — ртутный казался громоздким и неудобным. Сходу придумалась схема, использовавшая терморезистор (а то и просто резистор, а в одном случае использовалась вообще галогенная лампочка), с усилителем, компаратором и ещё рядом хитростей, чтобы повысить точность. Получалась всё более и более навороченная схема, которая, конечно, после n-ного по счёту изменения не заработала, и разбираться желания уже не было, да и китайский термометр появился в процессе, и разработка заглохла за ненадобностью.

Но одной функции всё-таки не хватало. Термометр бывает полезен, когда надо не перегреть что-нибудь (например, воду в чайнике — для некоторых целей она не должна кипеть). Готового решения нет, значит надо что-то сделать.

Но только наученный горьким опытом (с электроникой всегда не везло, и до сих пор мне всегда удавались только очень простые конструкции), решил, что сделаю так, чтобы было просто и надёжно. И с неба свалилась микросхема LM35! Благодаря этому чуду задача упрощается до смешного.

Давайте покажу вам схему, которая обрадует любого новичка:

Оказалось, что к микросхеме не нужен даже компаратор.

Помню, когда сам читаешь чужую статью, вечно хочется спросить: а это зачем? а это? Теперь сам попытаюсь сделать так, чтобы никаких вопросов не возникало. Обо всё по порядку:

1. Микросхема LM35 (у неё есть несколько аналогов) специально создана для измерения температуры. Всё, что нужно — это подключить 1 и 3 ногу к плюсу и минусу питания соответственно, и измерить напряжение на среднем выводе. Оно составляет 10 милливольт на каждый градус Цельсия температуры корпуса микросхемы (она сама выглядит как транзистор, кстати). Значит, если там напряжение 230мВ, то температура 23°С.

В даташите про неё расписано ещё много хорошего: и потребляет она 130мкА, и выход у неё низкоомный, и точность в полградуса, и собственный перегрев порядка 0,1°С. В общем, круче некуда. Единственное — страдает она от слишком высоких температур — 150°С максимум.

2. Казалось бы, дальше должна идти микросхема компаратора, которая сравнит это напряжение с тем, которое мы выставим, например, потенциометром? Да, но можно обойтись и без компаратора. Напряжение открывания полупроводниковых приборов — 0,6В, надо это использовать.

3. Лезем в даташит на самый дешёвый транзистор — BC847 и видим, что в очень узком диапазоне напряжения база-эмиттер коллекторный ток сильно меняется. В качестве нагрузки, которая и будет сигнализировать об открытии транзистора, возьмём пьезоэлемент — зуммер. Приятным сюрпризом оказывается то, что от батарейки 9В от потребляет около 5мА, а при небольшом понижении тока перестаёт звучать. То есть включается достаточно резко.

4. Нужно как-то настраивать температуру срабатывания. Поставим переменный резистор, который будет делить напряжение. Движок вверх (по схеме) — напряжение передаётся напрямую, то есть срабатывание будет чуть выше 60 градусов. Движок вниз — коэффициент передачи 0,5, для срабатывания при максимально допустимой температуре в 150 градусов. Постоянный резистор на 10К нужен как раз для того, чтобы при полностью опущенном движке срабатывание всё-таки происходило.

5. Собираем на макетной плате — работает. Можно померить ток базы, необходимый для срабатывания, померить рабочий ток зуммера и обнаружить, что сделать его тише, включив последовательно ему резистор, не получится — он просто перестаёт звучать. Возникает другой вопрос: а что, если при коэффициенте передачи, равном 1, датчик нагреется до 150 градусов и выдаст, соответственно, 1,5В прямо на базу транзистора? Оказалось, что ничего страшного в этом нет — ток базы транзистора может с лёгкостью превышать 10мА, а LM35 выдаёт ток короткого замыкания в 2-3мА. Значит, даже при самом лютом перегреве транзистору ничего не будет.

Значит пора делать печатную плату. Файл формата Sprint-layout есть в приложениях. Вот так оно выглядит на этапе запайки smd-компонентов: (внимание, SMD резистор на фото — 1кОм, под имевшийся у меня подстроечник. Если следовать схеме, то маркировка должна быть 103, то есть 10кОм. В принципе, номиналы можно менять в широких пределах, чем меньше сопротивления — тем больше потребляемый ток в «спящем» режиме, но тем точнее температура срабатывания к расчётной

Верхние три отверстия — под разъём подключения датчика. Три здоровых — под переменный резистор. Ещё две — под питание. А что за три оставшихся, в ряд выстроившихся? Я, честно говоря, не знаю, как это назвать. Это то ли аналоговый выход, то ли отладочный порт, оба названия в такой схеме звучат одинаково смешно. Но факт в том, что сюда можно подпаять разъём и смотреть напряжение на выходе и напряжение на базе транзистора. Всё-таки, втыкать провода в разъём удобнее, чем подпаиваться каждый раз, если что-то понадобится посмотреть.

Вот такой резистор будет использоваться. Обратите внимание, что ножки у него немного подточены и загнуты так, чтобы проходить в нужные отверстия. Есть, правда, проблема, что они слишком короткие для таких извращений и не достают до обратной поверхности платы. Пришлось потом тонкой проволочкой наращивать.

После запайки остальных компонентов выглядит примерно так:

Вот и всё. Разъём для термометра таков, что в него можно напрямую вставить 3 ноги микросхемы (Vcc, то есть плюс питания, то есть левая нога, если смотреть на маркировку, должна быть со стороны зумера), погреть её на свечке (осторожно!), да посмотреть, как меняется выходное напряжение и в какую сторону крутить резистор. Для этого второй разъём как раз и нужен. Температура срабатывания получается немного выше ожидаемой из-за ненулевого тока базы транзистора, но это не страшно.

Для полного счастья датчик надо сделать выводным. Припаиваем 3 провода к датчику и штекер на другой конец. Я ещё залил ноги датчика термоклеем и загнал всё в термоусадку. Получилось вот так:

В таком виде его можно прямо окунать в воду. Если переменный резистор выставить так, чтобы зуммер срабатывал при температуре 90°С, то можно больше никогда не бояться садиться за компьютер, грея что-то на плите. А если на 110, то он будет срабатывать на полное выкипание воды.

Температурные датчики своими руками

Если у вас нет возможности купить готовые температурные датчики, например, Hardcano, сделайте их сами!

В программу установки большинства мамок включены какие-нибудь приложения по мониторингу железа. Эти приложения позволяют контролировать температуру твоей материнской платы и процессора, а иногда и температуру внутри корпуса, в том случае, если в комплект входит сенсор, как, например, у Abit. В других мамках используются другие программы, как, например, известная Motherboard Monitor. Даже некоторые производители видео карт предусматривают программы по их мониторингу. Ну а тем, кто, как и я, лишен такого удовольствия, но все же хочет наблюдать за температурой различных девайсов своего компа, вот более простой способ. Для начала тебе нужен температурный жидкокристаллический дисплей. Мы будем крепить его к лицевой заглушке корпуса, поэтому тебе понадобится что-то вроде температурного датчика Senfu LCD Temp. Ты можешь приобрести его у их сингапурского дистрибьютера MultiplayCity. Один дисплей стоит S$20. У него частота опроса составляет 3 секунды, в качестве щупа используется терморезистор. (***прим. перевод. – у нас температурные датчики можно приобрести, например, в магазине Чип и Дип ) Также можно взять температурные датчики для аквариумов, но в их комплект входит 4мм-вый металлический щуп, и частота опроса очень велика, что не очень подходит для наблюдения за температурой процессора или видео карты.

Click to enlargeТебе также понадобится лицевая заглушка корпуса для крепления жидкокристаллического дисплея. Я на своей заглушке установлю два дисплея.

Проводим линию по центру

Click to enlargeВ набор Senfu LCD входит панель для крепления дисплея, что немного облегчает разметку отверстий на заглушке. Просто приложи панель к заглушке и обведи ее отверстие. Для этого можно использовать карандаш или, еще лучше, тонкий маркер.

Используем панель крепления в качестве шаблона

Click to enlargeЯ буду вырезать отверстия дремелем. Если у тебя его нет, то можно просверлить отверстие внутри намеченного контура и воспользоваться лучковой пилой. Я установлю на дремель маленькие режущие круги, которые в свое время уменьшились в результате серьезного «корпусного хакинга». Благодаря тому, что насадки маленькие, будет легче прорезать прямоугольные отверстия короткими участками. Затем надо довести отверстие до точных размеров мелкозернистым напильником.

Вырезаем прямоугольное отверстие

Сначала прорезаем длинную сторону

Click to enlargeЗакрепи заглушку в небольших тисках и начинай вырезать отверстия. Этот процесс займет у тебя не больше 5 минут. Как видишь, часть пластмассы расплавилась из-за трения круга. Удали ее мелкозернистым напильником и обработай им все отверстие до необходимого размера.

Читать еще:  Правильная установка прожектора с датчиком движения

Затем проверь, хорошо ли устанавливаются дисплеи в отверстия. Они должны входить не слишком туго и не слишком свободно, а именно так, чтобы зажимы сзади дисплеев могли закрепить их на заглушке. Щуп имеет длину 1 м, что вполне достаточно, чтобы дотянуться до любой точки в корпусе full tower.

Приборы контроля пламени и факела и датчики контроля пламени МЗТА

Приборы контроля пламени и факела МЗТА Ф34.2, Ф34.3. Датчики контроля пламени ФДЧ, ФСП 1.1, ФСП 1.2, ФЭСП 2Р

В этом разделе представлены приборы котельной автоматики обеспечивающие безопасность работы котлов. Они контролируют наличие пламени в топке котла и отключают подачу топлива при пропадании факела, защищая котел от возможного взрыва. Мы предлагаем следующие средства контроля пламени:


Приборы контроля пламени и управления розжигом
Приборы Ф34 (Ф34.2, Ф34.3) предназначены для применения в схемах контроля пламени горелочных устройств и топочных камерах стационарных котлов и печей.
Скачать описание

Датчик контроля пламени низкочастотный ФДЧ
Используется в топливосжигающих установках котлов и печей. Работает в сочетании с приборами Ф34.2 (один или два ФДЧ) и Ф34.3 (один, два или три ФДЧ).
Скачать описание

Сигнализатор пламени ФСП 1.1 (ФСП 1.2)
Фотосигнализатор пламени ФСП 1.1 (ФСП 1.2) используется в топливосжигающих установках котлов и печей для контроля и сигнализации наличия пламени и управления розжигом. Работает как автономное устройство.
Скачать описание

Сигнализатор пламени ФЭСП 2 Р
Фотоэлектродный сигнализатор пламени ФЭСП 2 Р предназначен для контроля и сигнализации наличия пламени запальника и пламени горелки.
Скачать описание

Приборы Ф34 (Ф34.2, Ф34.3)

Эти приборы работают в комплекте с любыми датчиками наличия пламени, как электродными детектирующими, так и фотоэлементными видимого, ИК- и УФ-диапазонов излучения. Они реализуют функции розжига и контроля наличия пламени со всеми необходимыми выдержками и защитными операциями.

Существует две модификации этих приборов Ф34.2 и Ф34.3. Они отличаются числом подключаемых датчиков и наличием функции управления розжигом. Обе модификации могут работать со следующими типами датчиков пламени:

  • детектирующими (контрольные электроды типа КЭ);
  • ультрафиолетовыми;
  • частотными типа ФДЧ;
  • другими типами преобразователей, формирующих выходной сигнал постоянного напряжения в диапазоне -10…1.5 В.

Датчики контроля пламени

Автономные приборы-сигнализаторы и фотодатчики применяются для контроля и сигнализации наличия пламени горелочных устройств котлов и печей. Приборы состоят из фотоприемника и электронной части, размещенных в одном корпусе, и преобразуют низкочастотные пульсации видимого и ИК-излучения частотой 6…12Гц и длиной волны 0.5…3мкм в выходной аналоговый или дискретный сигналы. Эти приборы устанавливаются так, чтобы при любом режиме горения контролируемое пламя находилось в зоне прямой видимости датчика.

Датчик контроля пламени низкочастотный ФДЧ

Датчик преобразует низкочастотные пульсации видимого и ИК-излучения в сигнал напряжения постоянного тока 0…10В. Датчик может использоваться с приборами Ф34.2 (один или два ФДЧ) и Ф34.3 (от одного до трех ФДЧ).

ФСП 1сигнализатор пламени

Одноканальный сигнализатор наличия пламени горелочных устройств котлов и печей. Прибор преобразует низкочастотные пульсации видимого и ИК-излучения в релейные выходные сигналы.

Сигнализатор выпускается в двух модификациях — ФСП 1.1 и ФСП 1.2. Обе модификации имеют одинаковые датчики контроля за наличием факела, но отличаются типом используемого выходого реле.

ФЭСП 2Р фотоэлектродный сигнализатор пламени

ФЭСП 2Р предназначен для контроля и сигнализации наличия пламени запальника и пламени горелки. Прибор использует два входных сигнала – от встроенного фотодатчика и от внешнего электродного датчика пламени (КЭ), преобразуя их в релейные выходные сигналы постоянного или переменного тока.

Разновидности датчиков температуры для котла отопления: советы по выбору

Датчик температуры для котла отопления это специальное приспособление, контролирующее работу теплоносителя.

С помощью датчика проводится анализ текущего температурного режима в помещении и при необходимости её корректировка. Этот прибор помогает максимально повысить производительность котла и создать в помещении комфортный микроклимат.

Принцип взаимодействия температурного датчика для котла отопления

Первым делом термодатчик определяет уровень температурного режима в контролируемом помещении. Затем полученные сведения поступают в блок управления и анализируются.

В зависимости от установленного теплового режима прибор сигнализирует о необходимости увеличить или уменьшить температуру.

После чего система отопления автоматически проведёт корректировку. Таким образом, включение и выключение котла напрямую зависит от работы термодатчика.

В зависимости от типа размещения и способа передачи данных термодатчики делятся на несколько видов.

По способу размещения датчики бывают:

  • комнатные – устанавливаются в помещении и осуществляют контроль температурного режима внутри;
  • внешние – расположены за пределами дома, проводят корректировку микроклимата в помещении с учётом температурных показателей на улице;
  • накладные – монтируются непосредственно к трубе системы отопления;
  • погружные – располагают внутри теплоносителя.

Фото 1. Температурный датчик погружного типа для отопительной системы газового котла в частном доме.

Проводные и беспроводные

В зависимости от способа передачи информации термодатчики также делятся на подтипы. Бывают проводными и беспроводными. В первом случае показатели с прибора поступают на ресивер посредством проводного соединения. Беспроводные модели передают данные дистанционно, с помощью специального приспособления.

Принцип работы комнатного устройства

Термодатчик, расположенный в терморегулируемом устройстве, определяет температуру воздуха в помещении или в самом теплоносителе.

Желаемый температурный режим предварительно устанавливается пользователем и заносится в память термостата.

Работа терморегулятора заключается в сопоставлении данных полученных с приспособления и установленного температурного режима.

Справка! В случае несовместимости этих двух показателей система автоматически проводит корректировку (запуская или приостанавливая работу котла).

Датчик температуры Бакси для отопительной системы в частном доме

Среди разнообразия температурных регуляторов, одними из лучших считаются устройства от фирмы Baxi. Они имеют ряд преимуществ, заметно выделяющих устройства среди своих конкурентов.

Так к положительным качествам данной модели относят:

  • экономичность в процессе эксплуатации;
  • наличие системы самодиагностики;
  • возможность установки дополнительных датчиков или системы автоматики;
  • наличие автоматического регулятора, который учитывает температурный показатель как внутри помещения, так и на улице;
  • возможность использования этого устройства для корректировки температурных показателей в системе «тёплый пол».

Фото 2. Устройство фирмы Бакси оснащено системой самодиагностики, регулятором температуры по сезону, времени суток.

А также к преимуществам устройств Baxi относят и наличие дополнительных аксессуаров. Расширенная комплектация может быть оснащена:

  • функцией экономного режима;
  • регулятором температурного режима по времени суток и сезону;
  • регулятором температуры в разных помещениях.

Важно! Подобные функции позволяют использовать устройство с максимальной эффективностью, при этом существенно сэкономив затраты на электроэнергию.

Полезное видео

В видео проводится тестирование цифрового термодатчика для твердотопливного отопительного котла.

На что обратить внимание при выборе?

Чтобы отдать предпочтение «именно тому» датчику температуры, при его выборе специалисты рекомендуют обратить внимание на следующие нюансы:

Важно! Перед покупкой термодатчика нужно убедиться в том, что электросеть способна выдержать соответствующий уровень напряжения.

Датчик температуры для котла отопления — практичное и полезное приспособление, которое позволит создать в доме комфортный микроклимат и сэкономить семейный бюджет.

Ардуино: датчик огня

На этом уроке мы разберем подключение к Ардуино Уно весьма нестандартного датчика, который призван помочь нам в обнаружении открытого пламени!

Конечно, пламя можно обнаружить, например, с помощью термодатчика. Ведь все что горит, часто нагревается до огромной температуры. Но у этого варианта есть два отрицательных момента. Во-первых, термодатчик может пострадать, если его подносить очень близко к огню. Да и не очень удобно это — тыкаться во все датчиком. А во-вторых, термодатчик не сможет зафиксировать именно пламя! То есть детектирование будет опосредованным, что не всегда приемлемо.

Другой вариант — использовать тепловизор на основе микроболометров. Такие устройства позволяют в реальном времени строить температурную карту всех видимых поверхностей. Но тепловизор слишком дорогой для хобби-проектов, и пламя он опять-таки детектирует не напрямую.

Применение

Датчик огня используется в роботах-пожарных. Для этих роботов устраиваются целые соревнования, задача участников в которых заключается в поиске и тушении огонька в лабиринте.

Именно наш датчик огня позволит в будущем создать простого и эффективного робота-пожарного для подобных соревнований.

Инфракрасный датчик огня улавливает излучение в диапазоне 760 — 1100 нм, свойственное пламени свечи, например. На практике, такой датчик реагирует не только на пламя, но и на солнце, и даже на комнатные лампы. Чтобы избежать паразитной засветки, фотодиод необходимо закрывать с боковых сторон непрозрачным материалом. Для лучшей фильтрации посторонних источников света, при детектировании пламени таким датчиком, применяют алгоритм детектирования низкой частоты. Это возможно благодаря тому, что пламя свечи меняет свою интенсивность с частотой 15-20 Гц.

Подключение

У цифрового датчика пламени, который мы подключаем, есть всего три вывода:

  • Vcc — питание +5В;
  • Gnd — земля;
  • Out — сигнал.

Vcc и Gnd датчика подключаем к соответствующим выводам Ардуино Уно, а Out бросаем на любую свободную ногу. В нашем случае, соединяем Out c цифровым входом №2. Принципиальная схема подключения выглядит следующим образом.

Внешний вид макета

Теперь, когда датчик подключен, можно смело писать программу!

Программа

Использованный нами датчик пламени, имеет инвертированный выход, а значит, он будет возвращать ложь, если в пределах его видимости есть пламя, и истину — в отсутствии пламени. Напишем простую программу, которая будет включать зуммер, если датчик увидел перед собой огонь.

Записываем программу на Ардуино Уно, достаем зажигалку с крестовой отверткой, и готовимся к последнему этапу — настройке чувствительности датчика.

Читать еще:  Извещатели пожарные: классификация, типы, виды, обозначение

Дело в том, что на плате датчика пламени есть подстроечный потенциометр, с помощью которого мы и будем настраивать порог чувствительности. Для этого, включаем Ардуино Уно в USB, чтобы запитать нашу схему, поджигаем огонь в 10 сантиметрах от датчика, и начинаем крутить потенциометр, пока зуммер не запищит.

Если правильно собрать схему, залить программу, и настроить чувствительность, получится примерно следующее.

Самодельный лазерный датчик своими руками: конструкция и инструкция по его сборке

Для надежной защиты домашнего имущества сегодня разработано большое количество систем безопасности. Чаще всего устанавливают сигнализации, которые оснащаются специальными датчиками, позволяющими полностью контролировать происходящие в охраняемых помещениях процессы. Одним из главных устройств, которым оснащаются сегодня охранные системы является лазерный датчик движения, улавливающий даже мельчайшее движение в охраняемых помещениях. Стоит отметить и то факт, что эти устройства безопасности можно сделать самостоятельно своими руками из недорогих деталей.

  1. Область использования
  2. Принцип работы
  3. Конструкция
  4. Инструкция по самостоятельной сборке датчика из лазерной указки
  5. Заключение

Область использования

Благодаря высокой чувствительности лазерные датчики используют для защиты:

  • банков и других финансовых организаций;
  • кабинетов и офисов;
  • частных домов;
  • квартир.

Из-за большой стоимости заводских лазерных сигнализационных систем их используют чаще всего в организациях. Для защиты частных жилых объектов можно использовать самодельные детекторы движения.

Принцип работы

Лазерный сенсор движения состоит из излучателя и фотоэлемента. Излучатель генерирует лазерный луч, направленный на размещенный напротив него фотоэлемент.

Когда на фотоприемник лазерный луч не попадает, он имеет высокое сопротивление, а после облучения лучом света его сопротивление понижается.»

Пока на фотоэлемент попадает луч света, электрическая схема защитной системы замкнута и релейная система не подает питание на внешние устройства защиты и оповещения. После того, как луч перестает поступать на фотоэлемент быстро увеличивается его сопротивление, в результате чего размыкается электрическая цепь и релейная система включает защитные и оповестительные устройства. Принцип работы одинаков для «заводских» и самодельных датчиков.

Конструкция

Чтобы своими силами сделать лазерный сенсор движения нужны основные знания электроники, а также требуются навыки пайки электропаяльником и недорогие детали. Чтобы своими собрать лазерный сенсор необходимы такие детали:

  • излучатель;
  • фотоприемник;
  • релейный узел;
  • адаптер электропитания для излучателя;
  • монтажные элементы;
  • проводники;
  • материалы и инструменты для пайки;
  • набор вспомогательных инструментов.

Излучатель можно сделать из привычных всем лазерных указок и брелоков, а также из лазера, которым оснащаются некоторые игрушки. В качестве приемника луча лазера может использовать простой фоторезистор, у которого изменяется сопротивление после облучения его лучом света. Использование релейного механизма позволяет приводить в действие защитные и оповестительные устройствами после срабатывания датчика.

Датчик из лазерной указки является самым простым, поэтому его сделать самостоятельно может каждый. Поэтому ниже мы разберем процесс его сборки.

На видео: Лазерный датчик с Aliexpress, собираем самостоятельно.

Инструкция по самостоятельной сборке датчика из лазерной указки

В качестве излучателя, как вы поняли из названия инструкции, будет использоваться простая лазерная указка. Она работает от обычных батареек маленькой ёмкости, поэтому нужно оснастить её качественным и постоянным электропитанием. Для этого подойдет низковольтный адаптер питания, подключенный через реостат или усовершенствованный с помощью установки регулирующего резистора на выходе. Благодаря такому электропитанию обеспечивается бесперебойное излучение, генерируемое до тех пор, пока есть электричество в питающей электросети.

Схема сборки лазерного датчика

Приемник луча будет состоять из простого фоторезистора, изменяющего сопротивление после воздействия на него пучка света. Чтобы он не срабатывал на обычный солнечный свет, имеющийся практически во всех помещениях, фоторезистор нужно разместить в тубусе темного цвета. Это исключит ложные срабатывания охранной системы, использующей в работе самодельный детектор движения. Благодаря этому будет более комфортно пользоваться охранной системой.

Чтобы устройство нормально функционировало, нужно чтобы его рабочие детали (излучатель и фотоэлемент) размещались на одной оси. Это позволит лучу попадать строго на фоторезистор, что обеспечит четкую работу сигнализации.»

При использовании лазерного сенсора в охранной системе к нему подключают релейную систему, которая управляет внешними защитными и оповестительными устройствами. Через это реле подключают и электропитание устройства. Это делается для того, чтобы при срабатывании сигнализация не отключалась после того как луч света снова начнет падать на фотоэлемент. Поэтому сигнализация будет слышна до тех пор, пока ее не выключат.

Заключение

Собрать своим рукам лазерный сенсор движения очень просто. Сигнализация на базе самодельного лазерного сенсора обойдется дешевле «заводских» аналогов. По возможностям самодельный детектор движения практически ничем не хуже устройств промышленного исполнения. При этом самодельный датчик можно быстро модернизировать. С помощью использования лазера меньшей мощности и отражателей из зеркал, можно сделать эффективные лазерные ловушки, которыми можно покрыть всё охраняемое помещение. Поэтому самодельные устройства позволяют расширить возможности охранных систем, что сделает ваше жилое или рабочее помещение более защищенным и безопасным.

На видео: Лазерный датчик из Anduino

Простой цифровой термометр своими руками с датчиком на LM35

Для изготовления этого простого цифрового термометра необходим температурный датчик LM35, цифровой вольтметр (любой недорогой китайский цифровой мультиметр), два маломощных диода, один резистор и несколько батареек (либо элемент типа «Крона»). Из этих компонентов можно быстро собрать простой цифровой многофункциональный термометр с диапазоном температур от -40 до +150 градусов Цельсия. Для измерения только положительных температур диоды и резистор не нужны.

Точность измерения температуры 0,1 градуса Цельсия, т.е. термодатчик для многих применений можно назвать прецизионным. Для этого универсального цифрового термометра использованы полупроводниковые датчики температуры LM35DZ/NOPB для температуры от 0 до +100°C и LM35CZ/NOPB для температуры от -40 до +110°С в корпусах TO-92. В datasheets некоторых производителей LM35 указана верхняя измеряемая температура +150 градусов Цельсия.

Такой электронный измеритель температуры можно быстро сделать своими руками. Достаточно подключить Крону (или три пальчиковые батарейки, соединенные последовательно) к датчику, а датчик к вольтметру, как показано на рисунке – и термометр готов. Датчик потребляет от источника питания ток не более 10 мкА, поэтому батарейку можно не отключать длительное время.

Диапазон использования такого цифрового датчика очень широк:
— термометр комнатный
— термометр уличный
— термометр для воды и других жидкостей
— термометр для инкубатора
— термометр для бани и сауны
— термометр для аквариума
-термометр для холодильника
— термометр для автомобиля
— цифровой многоканальный термометр и т.д.

Схема цифрового термометра для измерения температуры от минус 40 до плюс 110 градусов Цельсия с однополярным источником питания. Диоды маломощные кремниевые – КД509, КД521 и т.д. Диапазон измерения тестера надо устанавливать на 2 вольта (2000 мВ), последняя цифра будет показывать десятые доли градуса, ее следует отделить точкой.

Для воды и других жидкостей датчик термометра следует сделать герметичным, для этого его можно залить силиконовым герметиком, либо поместить в медную трубку с внутренним диаметром 6 мм со сплющенным и запаянным концом. Запаянный конец трубки надо заполнить термопастой. Затем припаять к датчику провода, изолировать контакты и вставить датчик в трубку – протолкнуть до упора, чтобы он находился в теплопроводящей пасте. Таким образом получаем щуп-термометр. Если инерционность термометра не является критичной, датчик можно вставить в пластиковую трубку и загерметизировать ее концы.

Термометр легко сделать многоканальным. Для этого можно использовать как механические, так и электронные аналоговые переключатели. Ниже, для примера приведена схема двухканального термометра для плюсовых температур с использованием «перекидного» тумблера.

Этот прибор показывает уличную температуру, датчик висит за закрытой форточкой. Время на сборку заняло 30-40 минут.

Так выглядит прибор сзади. Собран градусник по схеме с одним источником питания, двумя диодами и резистором. Поскольку отрицательное смещение на диодах составляет порядка 2-х вольт, а минимальное напряжение питания датчика 4 вольта, в качестве БП использованы спаянные последовательно 5 батареек ААА. Датчики припаяны к неэкранированным проводам длиной 2,5 метра.

На этом фото показаны два термометра. Датчик первого размещен в холодильной камере, а второго — в морозильной камере этого же холодильника. Точка на индикаторе мультиметра нарисована черным маркером.

Измерил температуру своего тела – полный порядок. Подключил точно такой же другой прибор (без точки на индикаторе) к этому же датчику и огорчился, прибор «врет» в большую сторону на 0,2 градуса. В кипящей воде не пробовал: не готовы герметичные щупы. Перед замерами батарейки в обоих приборах заменил на одинаковые новые.

На основе этого термодатчика можно сделать простой регулятор температуры, добавив компаратор с регулируемым или фиксированным порогом срабатывания и силовой ключ (оптосимистор, реле …), который будет включать нагреватель. Для построения термостата (инкубатора, например) такая схема не пойдет, LM35 необходимо подключать к устройству с функцией ПИД-регулятора, например, ТРМ210.

Автоматика управления газовыми котлами

Современные газовые котлы устроены так, что вмешательство человека в их работу почти не требуется: они могут самостоятельно включаться, выключаться и даже корректировать величину пламени горелок. Впрочем, все зависит от продвинутости конкретной модели. Какой должна быть система управления котлом, чтобы принимать в ней минимальное участие?

  • 1 из 1

На фото:

Основные компоненты системы автоматики управления котлом

Блок управления, датчики и устройства. Газовые котлы отопления управляются группой устройств, которые корректируют режимы работы котла, а также обеспечивают автоматический розжиг горелки. Основа системы — блок управления (контроллер), который получает и обрабатывает информацию от первичных датчиков, а также отдает команды исполнительным устройствам.

Читать еще:  Как работает датчик движения, подключение и настройка

Почему пламя горелки становится то сильнее, то слабее? Если датчик температуры теплоносителя регистрирует значительный — в несколько десятков градусов — температурный перепад на входе и на выходе из теплообменника, это говорит о том, что происходит интенсивный отбор тепла от отопительных приборов. Проще говоря, в доме холодно, и эту ситуацию надо исправить как можно быстрее. И контроллер выводит горелку на максимальную мощность. Если же разница составляет всего несколько градусов или вовсе отсутствует, блок управления делает вывод, что отбор тепла минимальный или не происходит, то есть в доме установилась комфортная температура. Тогда горелка переводится на минимальную мощность, а то и отключается. Это делается не только ради экономии топлива, но и во избежание перегрева жидкости в системе.

На фото: датчик температуры теплоносителя от фабрики Baxi.

Первичные датчики

Их задача — сигнализировать о параметрах работы котла. Иными словами, датчики передают показатели на блок управления, который и принимает решение о необходимости того или иного действия. Сразу уточним, что не каждый котел отопительный газовый имеет в стандартном комплекте поставки все из перечисленных ниже датчиков. Их наличие зависит от модели.

  • Датчик температурытеплоносителя. Помогает контроллеру регулировать пламя горелки. Как правило, котел отопительный газовый имеет два таких датчика: один контролирует температуру жидкости на выходе из теплообменника, другой сигнализирует о том, насколько охладился теплоноситель в обратной трубе («обратке») после прохождения через все отопительные приборы в доме. Полученная разница температур (ΔТ) позволяет контроллеру отдать команду об увеличении или уменьшении интенсивности работы газовой горелки, вплоть до отключения котла.
  • Датчик пламени. Полное название этого устройства — «датчик наличия пламени на горелке» четко объясняет его предназначение. Если факел угаснет, датчик подаст сигнал и контроллер предпримет действия для повторного розжига или, в случае возникшей неисправности, полностью отключит котел.

Как работает датчик пламени в продвинутых моделях? Если котел отпительный газовый имеет более сложный контроллер, то датчик пламени помогает бороться с такими нарушениями, как «отрыв» и «проскок» пламени. В обоих случаях факел имеет неправильное положение, это ведет к неравномерности прогрева, из-за чего теплообменник выходит из строя. Отрыв пламени — это явление, при котором горение топлива происходит не на горелке, а на некотором расстоянии от нее; виной тому избыточное давление газа. Недостаточное же давление приводит к проскоку: факел «уходит» в трубу, и топливо сгорает еще до горелки, что может повредить газопровод.

  • Анализатор отходящих газов. Он контролирует состав атмосферы в дымоходе: отклонение смеси газа и воздуха от нормы приводит к образованию свободного углерода (сажи) и водорода, наличие которых и фиксируется анализатором. На основании его показаний контроллер меняет параметры приготовления смеси, как правило, за счет увеличения или уменьшения подачи газа. Этот датчик, как правило, имеют продвинутые газовые котлы отопления.

Метеостанция DIY

Датчики на которых собираю метеостанцию:

  1. CO2 — Senseair s8-53 (2тыс рублей)
  2. Влажность-давление — BME 280 (температуру буду брать с другого датчика) 152 рубля
  3. Температура DS18b20 (80 рублей)
  4. Дисплей 2,8 «nextion ( 1200 руб )
  5. ESP8266 (250 руб)
  6. Лазерный датчик пыли PMS5003 -pm1/pm2.5/pm10 (1200 руб)
  7. Блок питания (80руб)

Итого без учета корпуса, себестоимость датчиков: 4962 руб.

Температуру решил не выводить с BME 280 (так как он завышает показания), а использовать вместо него DS18b20, сравнил показания BME 280 и DS18b20 и Акару (разница в 0.5)

dht, htu — решил обойти стороной так как судя по тестам раз, два, они проигрывают по температуре DS18b20 и влажности BME 280

немного полезной информации по датчику DS18b20 из чата DIY от @widapro

Преимущество ds18b20 в том что он откалиброван на заводе и не нуждается в калибровке

ds18b20 не рекомендуют часто опрашивать, т.к. от частых запросов он нагревается и начинает немного врать.

ds18b20 вполне промышленный датчик, много где на производстве используется. Из практики погрешность у него -0.5 градуса.

я сам тесты делал, с пяток датчиков проверял одновременно

ds18b20 есть открытые и закрытые(стальная трубка). Вот закрытые немного инерционные, т.к. корпус имеет свою теплоемкость на нагрев/охлождение которой нужно потратить некоторое время.

закрытый не боится влаги, его удобнее использовать на улице. Ну еще закрытый можно в агресивные среды пихать, типа в огонь или в воду.

DS18b20 vs bme280 vs Aqara

больше данных по клику

1 Этап подключение датчиков

Первое тестовое подключение Дисплея к Nextion

После первого успешного подключения, подключил все остальные датчики, все данные отображаются, отлично

Добавил в Home Assistant

2 этап разработка корпуса

1-ая версия корпуса

2-ая версия корпуса (картинка на дисплее подставлена для визуализации с другого прибора)

1-вая версия корпуса, примерное расположение датчиков

3 этап дизайн интерфейса и меню

от 10.01.2020 Было немного времени

— добавил авто-яркость подсветки по времени суток, можно добавить датчик lux и управлять подсветкой дисплея автоматически в зависимости от освящения в комнате

— добавил второй экран по нажатию открывается второй экран с описанием датчиков

— добавил возможность переключения темы (дневная-ночная) или по времени суток в настройках дисплея

— планируется сделать второй экран где будут выводится уличные показания с уличного esp

Нужно додумать корпус, есп как-то вынести из корпуса или сделать для него отдельный отсек чтобы исключить влияние на температурный датчик и датчик влажности, плюс сделать подьем у корпуса небольшой

Корпус вижу в глянцеом исполнении, черный это черновая печать на дешевом пластике, для «подгона»

Ответы на вопросы из коментов

Руслан написал: Отличная метеостанция! А интерфейс как реализован? У есп изи есть графический редактор?

на дисплее Nextion 4-е пина

  1. питание 5v
  2. земля
  3. RX
  4. TX

1 часть питание взял не с ESP а с отдельного блока питания, на ESP8266 воткнул RX на TX и TX на RX (крест на крест) в есп изи выбрал дисплей

2-ая часть вывод информации загрузил софт Nextion Editor для конфигурирования дисплея- дизайн, менюшки и код пишется, сконфигурировал его, скомпилировал, скопировал на карту памяти, выключил дисплей вставил карту памяти, включил дисплей, дисплей прошивается, убрал карту памяти, «дизайн» с кодом загрузился, какой код? ну вот пример у меня при достижении 800ppm цвет меняется на оранжевый а при 1200 ppm на красный, если меньше 600 то зеленый, ну или привязать ползунок чтобы управлял чем-то или для визуализации

после взял переменные которые добавил в программе, для co2 это t7 и теперь можно попробовать тестово вывести данные с есп изи открываю дисплей и там прописываю t7.txt=500 и смотрю если все ок, то

(можно в отладке программы тестировать через Debug)

прописываю уже датчики(на картинке подробно) и они в режиме реального времени отображает данные, дисплей сенсорный, можно сделать на нем любое управление чего угодно, можно включать выключать реле

Дисплей Nextion посмотреть модели на официальном сайте, при конфигурирование дисплея нужно будет выбрать его модель

Сделай сам: электронный термометр своими руками

  • Георгий Меньшиков 25 апреля 2016
  • Самоделки для домаСамоделки для радиолюбителей

Сегодня мы расскажем, как своими руками сделать электронный термометр из трех деталей.
Очень простой и достаточно точный термометр можно сделать, если у вас случайно завалялся старый стрелочный амперметр со шкалой 100 мкА.
Для этого потребуется батарейка и всего две детали.
Температура измеряется датчиком LM 35. Этот интегральный кремниевый датчик включает в себя термочувствительный элемент — первичный преобразователь температуры и схему обработки сигнала, выполненные на одном кристалле и заключенные в пластмассовый корпус, такой, как, например, у КТ 502 (ТО- 92). У датчика LM 35 есть конструктивная разновидность с теми же параметрами, но иной цокалевкой и теплоотводом, что очень удобно для контактных измерений температуры.
Выходное напряжение датчика LM 35 пропорционально шкале Цельсия (10мВ/ С). При температуре 25 градусов этот датчик имеет на выходе напряжение 250 мВ, а при 100 градусов на выходе 1,0 В.
Обозначение датчика несколько необычно. Цоколевка приведена на рисунке.
На схеме датчик изображают прямоугольником с обозначением типа прибора и нумерацией выводов.
Схема термометра приведена на рисунке и столь проста, что не требует пояснений.
Собранный термометр должен быть откалиброван.
Включите схему. Датчик LM 35 плотно прижмите к резервуару ртутного градусника, например с помощью изоленты, укутайте место соединения или просто положите все под подушку. Так как любые тепловые процессы инерционны, придется подождать с полчаса или больше, чтобы температуры датчика и градусника выровнялись, затем потенциометром установите стрелку микроамперметра на цифру, соответствующую температуре градусника. Вот и все. Термометром можно пользоваться.
В авторском варианте для тарировки был использован градусник от 0 до 50 градусов Цельсия с ценой деления 0,1 градус, поэтому термометр получился достаточно точным.
К сожалению, найти такой градусник проблематично. Для грубой тарировки можно просто положить датчик рядом с термометром, измеряющем скажем температуру в помещении, подождать часа два и выставить нужную температуру на шкале микроамперметра.
Если точный градусник все же найдется, то в качестве индикатора вместо стрелочного прибора можно использовать цифровой мультиметр, например китайский ВТ-308В, тогда показания температуры можно будет считывать до десятых долей градуса.
Для тех, кто хочет ознакомиться с интегральными датчиками подробно- простите сайт kit-e.ru или rcl-radio.ru (искать LM 35).

Автор статьи “Сделай сам: электронный термометр своими руками” Георгий Меньшиков

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector